Genetic Programming Learning and the Cobweb Model∗

نویسندگان

  • Shu-Heng Chen
  • Chia-Hsuan Yeh
چکیده

Using genetic programming to model the cobweb model as a multiagent system, this chapter generalizes the work done by Arifovic (1994), which is based on genetic algorithms. We find that the rational expectations equilibrium price which can be discovered by genetic algorithms can also be discovered by genetic programming. Furthermore, genetic programming requires much less prior knowledge than genetic algorithms. The reasonable upper limit of the price and the characteristic of the equilibrium which is assumed as the prior knowledge in genetic algorithms can all be discovered by genetic programming. In addition, GP-based markets have a self-stabilizing force which is capable of bringing any deviations caused by mutation back to the rational expectations equilibrium price. All of these features show that genetic programming can be a very useful tool for economists to model learning and adaptation in multiagent systems. In particular, with respect to the understanding of the dynamics of the market process, it provides us with a visible foundation for the “invisible hand”.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic algorithm learning and the cobweb model*

This paper presents the cobweb model in which competitive firms, in a market for a single good, use a genetic algorithm to update their decision rules about next-period production and sales. The results of simulations show that the genetic algorithm converges to the rational expectations equilibrium for a wider range of parameter values than other algorithms frequently studied within the contex...

متن کامل

An Application of Genetic Network Programming Model for Pricing of Basket Default Swaps (BDS)

The credit derivatives market has experienced remarkable growth over the past decade. As such, there is a growing interest in tools for pricing of the most prominent credit derivative, the credit default swap (CDS). In this paper, we propose a heuristic algorithm for pricing of basket default swaps (BDS). For this purpose, genetic network programming (GNP), which is one of the recent evolutiona...

متن کامل

Two-stage fuzzy-stochastic programming for parallel machine scheduling problem with machine deterioration and operator learning effect

This paper deals with the determination of machine numbers and production schedules in manufacturing environments. In this line, a two-stage fuzzy stochastic programming model is discussed with fuzzy processing times where both deterioration and learning effects are evaluated simultaneously. The first stage focuses on the type and number of machines in order to minimize the total costs associat...

متن کامل

A New Correlation Based on Multi-Gene Genetic Programming for Predicting the Sweet Natural Gas Compressibility Factor

Gas compressibility factor (z-factor) is an important parameter widely applied in petroleum and chemical engineering. Experimental measurements, equations of state (EOSs) and empirical correlations are the most common sources in z-factor calculations. However, these methods have serious limitations such as being time-consuming as well as those from a computational point of view, like instabilit...

متن کامل

On economic applications of the genetic algorithm: a model of the cobweb type*

This paper explores the idea of using arti®cial adaptive agents in economic theory. In particular, we use Genetic Algorithms (GAs) to model the learning behavior of a population of adaptive and boundedly rational agents interacting in an economic system. We analyze the behavior of a GA in two versions of a model of the cobweb-type, one in which ®rms make only quantity choices, and the other one...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994